Suppression of a temperature-sensitive cdc33 mutation of yeast by a multicopy plasmid expressing a Drosophila ribosomal protein.

نویسندگان

  • C Lavoie
  • R Tam
  • M Clark
  • H Lee
  • N Sonenberg
  • P Lasko
چکیده

The Saccharomyces cerevisiae cdc33ts4-2 mutant produces a temperature-sensitive allele of the cap-binding subunit of eukaryotic initiation factor-4F (also termed eIF-4E). From a Drosophila cDNA library constructed in a multicopy yeast shuttle vector, a clone was isolated which restored the ability to grow at elevated temperature to cdc33ts4-2 cells. The rescuing Drosophila clone encodes a small ribosomal subunit protein, which we name S15a based on its molecular weight and similarity with the Brassica napus S15a ribosomal protein. Transcription of the Drosophila gene, RpS15a, occurs at all developmental stages and is enhanced during oogenesis. The ribosomal protein gene is capable of suppressing other alleles of cdc33 but not an inactivation mutation, suggesting that suppression is dependent upon the presence of the temperature-sensitive eIF-4E protein. Supporting this, Western blot analysis shows that far more eIF-4E protein is present in cdc33 yeast cells expressing the RpS15a gene than lacking it. Levels of other unrelated proteins are unaffected. We propose therefore that the expression of high levels of the Drosophila S15a ribosomal protein in the cdc33 yeast cells leads to a selective stabilization of the temperature-sensitive eIF-4E protein, which accounts for the suppression phenomenon.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of the Recombinant Plasmid Expressing AID under the Control of Temperature-sensitive Promoter of Bacteriophage Lambda

Background and purpose: Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme responsible for somatic hypermutation (SHM) and class switch recombination (CSR) of antibody genes within the B-cell follicle of peripheral lymphoid organs. Ectopic overexpression of the enzyme leads to mutations in non-B cells and Escherichia coli (E.coli) genes. However, induction of mutations in E...

متن کامل

The gene for 16S rRNA methyltransferase (ksgA) functions as a multicopy suppressor for a cold-sensitive mutant of era, an essential RAS-like GTP-binding protein in Escherichia coli.

Era, a Ras-like GTP-binding protein in Escherichia coli, has been shown to be essential for growth. However, its cellular functions still remain elusive. In this study, a genetic screening of an E. coli genomic library was performed to identify those genes which can restore the growth ability of a cold-sensitive mutant, Era(Cs) (E200K), at a restrictive temperature when expressed in a multicopy...

متن کامل

A cyanobacterial strain with all chromosomal rRNA operons inactivated: a single nucleotide mutation of 23S rRNA confers temperature-sensitive phenotypes.

The presence of a multicopy chromosome, with each copy containing two rRNA operons (rrnA and rrnB), has been an obstacle to analysing mutated rRNA in Synechococcus PCC 7942. To create a system for expressing homogeneous mutated rRNA, the chromosomal rrn operons were sequentially inactivated and a final strain was successfully obtained with all the chromosomal rrn operons inactivated but carryin...

متن کامل

Inhibition of mRNA turnover in yeast by an xrn1 mutation enhances the requirement for eIF4E binding to eIF4G and for proper capping of transcripts by Ceg1p.

Null mutants of XRN1, encoding the major cytoplasmic exoribonuclease in yeast, are viable but accumulate decapped, deadenylated transcripts. A screen for mutations synthetic lethal with xrn1Delta identified a mutation in CDC33, encoding eIF4E. This mutation (glutamate to glycine at position 72) affected a highly conserved residue involved in interaction with eIF4G. Synthetic lethality between x...

متن کامل

Construction of recombinant yeast expressing EpEX as a suitable candidate in cancer diagnosis and therapy

Introduction: Epithelial cell adhesion molecule (EpCAM) is a membrane glycoprotein that is overexpressed on the majority of tumor cells of epithelial origin and thereby can be used as a target of immunodetection and immunotherapy of cancer. So, it is important to produce this protein in its native form. Interestingly, during the last two decades, the yeast Pichia pastoris (P. pastoris) has beco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 269 20  شماره 

صفحات  -

تاریخ انتشار 1994